1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。具体转化方法有:
①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。
3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
4、解某些复杂的特型方程要用到换元法。换元法解题的一般步骤是:设元→换元→解元→还元。
5、待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。
6、复杂代数等式条件的使用技巧:右边化为零,左边变形。
7、数学中两个最伟大的解题思路:
①求值的思路---方程思想与方法---列欲求值字母的方程或方程组
②求取值范围的思路---不等式思想与方法---欲求范围字母的不等式或不等式组
8、化简二次根式m的基本思路:把m化成完全平方式。
10、代数式求值的方法有:①直接代入法②化简代入法③适当变形法(和积代入法)。注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用和积代入法求值。
欢迎咨询~
地址:上海市闵行区江川东路578号
热线:021-64355697 18930494336